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1. INTRODUCTION 

The process of hot char br ique t t ing  now being developed a n d  explo i ted  by the 
National Coal Board cons is t s  of the d i r e c t  b r ique t t ing  of hot fluid-bed carbonised 
char. The pr inc ipa l  process var iab les  have already been discussed by Habberjam and 
Gregory (I), and this paper concerns an extension of  t h e i r  work. 

The coal  seams so f a r  considered f o r  the hot char  br ique t t ing  of  l o w  rank coal  
have been of similar petrographic composition, i c e .  about 6& v i t r i n i t e ,  17% e x i n i t e ,  
and the remainder composed of micr ini te  1 and 2, f u s i n i t e ,  shale  and pyr i te .  There 
is no reason why o ther  coal  seam6 should not be examined, p a r t i c u l a r l y  s ince  c e r t a i n  
coa l  preparative treatments, e.g. s e l e c t i v e  f r o t h  f l o t a t i o n  and dense medium separa- 
tions,have the e f f e c t  of concentrating one p a r t i c u l a r  maceral or group of  macerals at  
the expense of the others. It w a s  considered that coals  of unusual maceral composition 
might e x h i b i t  a new range of br ique t t ing  proper t ies .  

Although work has been published on the thermal changes occurr ing i n  individual  
c o d  macerals, no systematic survey has been made using B r i t i s h  low rank coa ls  heated 
i n  fluid-bed conditions. 

Many workers, notably Kr8ger (2) and Fi tzgera ld  (3) have shown the pyrolysis  
behaviour of the individual  coa l  macerals t o  be d i f f e r e n t .  
Permitina (4) and Amnosov (5),  were working under coke oven condi t ions;  
using polished microscope sect ions of Russian coking coa l  chars ,  showed that only 
v i t r a i n ,  and v i t r a i n i s e d  masses and spores ,  contr ibuted s i g n i f i c a n t l y  t o  caking 
behaviour. 
minerals ,  made no contr ibut ion,  w h i l s t  xylo-vi t ra in  and p a r t i a l l y  fusainised a t t r i t i o n  
p z r t i c l e s  had low czking propert ies .  
has  confirmed tha t  v i t r i n i t e s  and e x i n i t e s  undergo v i s i b l e  changes during carbonisa- 
t i o n ,  and t h a t  the o ther  cons t i tuents  remain comparatively i n e r t .  
the thermal propert ies  o f  t h e  S t o p s  concentrates  during carbonisat ion,  and lists a 
considerable quantity of re levant  l i t e r a t u r e .  

They, as well  as 
Permitina, 

Permitina a l so  showed that fusainised micro-components, xylene* and 

Ergun ( 6 ) ,  working with a microscope hot-stage, 

Taylor (7) s tudied 

In t h i s  work the maceral system of coa l  component c l a s s i f i c a t i o n  w i l l  be used. 
The components analysed w i l l  be: 

v i t r i n i t e  , e x i n i t e ,  t o t a l  i n e r t i n i t e  , shale  and p y r i t e .  

The i n e r t i n i t e  will be f u r t h e r  divided into micrinite I, micrinite 2, and fusinite. 

* The word "xylene" i s  taken d i r e c t l y  from a t r a n s l a t i o n  of Permit ina 's  
paper. It probably implies  xylo-fusain. 
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The de ta i led  objec ts  of the present study were: 

(a)  t o  devise a method f o r  es t imat ing volume chsriges i n  the r a c e r e l s  
of l o w  rank coal  chars  heated i n  a f l u i d  bed; 

(h) t o  show whether v a r i a t i o n s  i n  the maceral compositions of the coal  
feed would a f f e c t  the c k a r  br ique t t ing  process; 

t o  follow m y  changes occurring i n  the  macerals of chzrs i n  the 
range 380' t o  5OO0C. 

( c )  

2. rnL%(IMENTAL 

2.1. Coal sample preparat ion 

Samples of four  low rank, high v o l a t i l e  c o a l s  were used.  An ana lys is  of these 
coals is given i n  Table 1. 

I 
I Coll iery 
j - 
j Calverton 

I 

I 

Denby H a l l  

Birch 
Coppice 

Dexter 

TABU 1 

Analyses of coa ls  used 

Seam : grade 
I received 

Eigh Main 

Mixed 

Mixed 

Mixed 

I 

Washed I 7.59 
s m a l l s  I 
Washed smalls 

I 5025 

Washed 1 5.53 
s m a l l s  ! 

I 
Washed 6.18 
s p e c i a l  1 
beans , 

I 

Ash ! Vola t i le  
% as ' matter 

received d.a.f. 

11.68 % .83 

16.50 , 37.80 

11.11 41.19 ' 

1.66 38.03 

I 

Samples of one coa l ,  namely Calverton CRC.902, were used to prepare maceral con- 
centrates .  
ref ined by f l o t a t i o n  and crushing,followed by s e l e c t i o n  under a low-power lens. 
basic  samples were prepared i n  t h i s  way, the proximate analyses being given i n  
Table 2. 

Bards, b r i g h t s  and fusinised mater ia l s  were manually se lec ted ,  and f u r t h e r  
Three 

TABLE 2 

Proximate analyses of b a s i c  samples 

I 
Durain 1 Vit ra in  ' ~usain 

Moisture 5.95% 12.47% 4.55% 
Ash (dry b a s i s )  7.67% 1.0796 10.29% 
Vola t i le  matter (c.a.f) 38.49% 35.61% 24.80% 

I 
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Ten mixes were prepared from the three  basic  samples, the  vitrain, d u r e  and 
fusein samples being l i s t e d  as Sample Nos. 1, 8 and 10 respec t ive ly  (Table 3). 

Sample No. 

V i t r i n i t e  Vole $ 
ExiDite 
Tota l  

Micr ini te  1 
Micrini te  2 

Fusinite 11 

Shale 

Pyrite 

inertinite 

11 

11 

k 

1 

97.9 
1.7 

0.4 
0.3 
0.1 

t 

\ 

a 
I 

I 
I .  

TABLE 3 

Analyses of Calverton coal  
macerdl concentrate blends 

2 - 
'4.7 
9.8 

5.5 
7.5 
4.8 
3.2 

- 
3 

51.4 

- 

28.6 

19.3 
12.7 
6.5 
0.1 

0.7 

- 
2e2e Apparatus 

Two systems of fluid-bed carbonisat ion were used: 

35-7 14.5 16.7 
14.8 51.1 3k4.4 

49*3 344.4 48.5 
27.2 26.8 31.0 
15.2 7.3 12.1 

6,9 0.3 5.4 
0.2 1 0.4 

i : 
I 

- 
10 

23.9 

- 
5.4 

70.3 
33.7 
24.3 
12.3 
0.1 

0.3 - 

(I) A 2-inch laboratory-scale fluid-bed of the design descr ibed by 
Habberjam and Gregory (I). 
the  pyrolysis  of macerals. 
this f l u i d  bed, i.e. 8 and 30 min., the f i r s t  4 min. of each per iod 
being t h e  hea t ing  time. 

T U  apparatus was used for the  study of 
Two carbonisat ion per iods were used in 

Nitrogen w a s  used as the  f l u i d i s i n g  gas. 

(2) A miniature fluid-bed and br ique t t ing  mould. This apparatus  consis ted 
of a 0.5-inch diameter tapered mould and hardened s tee l  plunger mounted 
i n  the  j a w s  o f  a hydraulic jack. A t i g h t l y  f i t t i n g  funnel wa6 placed 
i n  the top  of the  mould, 80 t h a t  the mould and funnel  toge ther  acted 
as a fluid-bed, the  funnel being removed from the mould f o r  br ique t te  
production. Air and nitrogen were used 86 the  f l u i d i s i n g  gases. 

One carbonisat ion period wa.s used in the miniature bed, i.e. 5 min. , including 
a 2 min. heat ing period. 

2.3. Test ing and analysis of samples 

The br ique t tes  prepared at  6 tons/sq.in. were t e s t e d  f o r  t h e i r  bulk densi ty  and 
mechanical s t rength  by the method described by Habberjam and Gregorg (I). 

The samples f o r  maceral ana lys i s  were ground as c o a l  to -10 B.S.S. and reduced 
t o  30 gm. using an Otto Microspl i t te r  (8). These samples were then carbonised i n  
the 2-inch fluid-bed, the chars  being f u r t h e r  reduced to approximately 1 gm. samples 
before impregnation and mounting in blocks with cold-set t ing polyes te r  resin. 
flat surface w a s  ground on the  blocks, using several  grades of carborundum powder 
on g l a s s  p l a t e s ,  and a high polish was obtained with f i n e  alumina powder on a Bolt ing 
a l lk  lap.  

A 
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A s t a t i s t i c a l  method o f  ana lys i s ,  based on a technique f i r s t  described by 
Delesse (9) w a s  used t o  determine the r e l a t i v e  volume of macerals i n  the coals  and 
chars. T h i s  w a s  based on t h e  f a c t  that, i n  a cross-sect ion of rock, the r a t i o  cf the 
area occupied by one mineral t o  the t o t a l  cross-sect ional  a rea  i s  a r e l i a b l e  estimate 
of the  t o t a l  volume percentage of t h a t  mineral. 

Several  methods of measuring the r e l a t i v e  a reas  of minerals i n  cross-sect ion 
have been proposed, but the most r e l i a b l e  w a s  taken as t h e  'po in t  counter '  technique 
described by Qlagolev (IO). I n  theory,  the cross-section i s  covered with a gr id  and 
the mineral occurring under each i n t e r s e c t i o n  is recorded. The r a t i o  of the number 
of  po in ts  at which the p a r t i c u l a r  mineral occurs t o  the t o t a l  number of  points  of 
the g r i d  may be r e l i a b l y  taken as the  r a t i o  of  the area of the mineral t o  the  t o t a l  
measured area. A mathematical proof of  these statements i s  given by Chayes (11). 
In p r a c t i c e ,  ins tead  of moving from point  t o  point  on a gr id ,  the polished coal  
s e c t i o n  is moved i n  successive s t e p s  along a number of t r a v e r s e s ,  and the mineral 
under the crosswires is recorded at each s tep.  
at 7% and to  2 1% at s, a t o t a l  of 1,000 poin ts  is analysed on each sample. 

I n  order  t o  limit the e r r o r  to f % 

In order  to est imate  t h e  changes i n  the volumes of  the  macerals wi th  respect  t o  
the o r i g i n a l  coal ,  it is  necessary t o  have some body or bodies present  which remain 
i n e r t  during carbonisation. Since t h e i r  volume does not  change, comparison i s  
possible  with the changing maceral volumes. Where a na tura l  i n e r t  m a t e r i a  i s  
present  i n  reasonable percentages, t h i s  may be used. 
however, t o  ensure t h a t  the e r r o r s  a re  l e s s  than the probable e r r o r  i n  the maceral 
ana lys i s .  

More than I($ must be present ,  

For the coals Calverton, Denby H a l l  and Birch Coppice, micr in i te  2, fus in i te  and 
minerals were regarded as s tandard  i n e r t s .  In the  case o f  Dexter, a percentage of gas 
coke ground t o  -10 B.S.8. w a s  added t o  the o r i g i n a l  coa l  charge. The poros i t ies ,  a l s o  
found by a 'point  counter' method, a re  a derived f igure (see s e c t i o n  3 ,  Discussion). 
Sect ions of  b r i q u e t t e s  were a l s o  mounted i n  r e s i n ,  and photomicrographs of sample chars 
were made with a Vickers pro jec t ion  microscope. (See photos. 1 through 12 . )  

3e R E m T S  AND DISCUSSION 

The experimental condi t ions f o r  br ique t t ing  and f o r  ffiaceral aalysis  were un- 
avoidably d i f fe ren t .  The b r i q u e t t i n g  trials using the very s m a l l  quar i t i t ies  of sample 
avai lable  were car r igd  out using a miniature f l u i d  bed which allowed f o r  heating r a t e s  
of  approximately 200 C/min. 
temperature, i .e .  5 min. af ter  sample introduct ion,  the br ique t tes  were formed. In 
the maceral a n a l y s i s  l a r g e r  samples were ava i lab le ,  and a more convenient and conven- 
t i o n a l  f l u i d  bed w a s  employed. 
100°C/min. and samples were analysed 4 min. and 26 min. a f t e r  they had a t ta ined  
carbonisat ion temperature, i.e. t o t a l  residence times o f  8 and 30 min. respect ively.  
Previous work had shown t h a t  b r i q u e t t e s  formed i n  the miniature f l u i d  bed a f t e r  
hea t ing  f o r  5 m i n .  had a s i m i l a r  performance t o  those a f t e r  8 - 10 min. i n  the more 
conventional bed. 

Three minutes a f t e r  the attainment of carbonisat ion 

The rate of heat ing i n  this bed w a s  approximately 

The r e s u l t s  of the  b r i q u e t t i n g  of maceral concentrates  a r e  given i n  Figures 1 t o  
3.  Calverton coal (C.R.C. 902, V.M. 37% d.a.f.1 w a s  used and the t h r e e  methods of 
b r i q u e t t e  assessment employed , i,e. s h a t t e r  index,  abrasion index and bulk dens i ty ,  
gave similar r e s u l t s .  Maceral concentrates  r i c h  i n  i n e r t i n i t e  produced poor 
b r i q u e t t e s ,  w h i l s t  both e x i n i t e  and vi t r ini te  r i c h  mixtures produced good br iquet tes .  
M n i t e  r i c h  mixtures containing over 25% micrinite 1 produced good br ique t tes ,  
whereas i n e r t i n i t e  r i c h  m i x t u r e s d t h  the same concentration of micr ini te  1 produced 
poor br ique t tes .  
production o f  s t rong br ique t tes .  
possible  and this w a s  not  r u l e d  out  by the microscopic study of the macerals (Fig. 4). 
Micr in i te  1 underwent some swelling between 375' and 400' C, t h e  swel l ing being 
greater a f t e r  30 min. carbonisa t ion  than a f t e r  8 m i n .  

I t w a s  therefore  unl ike ly  t h a t  micr in i te  1 contr ibuted t o  t h e  
An i n t e r a c t i o n  between e x i n i t e  and micr in i te  w a s  

This swell ing occurred f o r  all 

i 
i 

I 

I 

I 



the coals  considered (Figs. 5 and 7) .  

Samples containing p r a c t i c a l l y  pure vitrinite (ne% by volume) produced s t rong 
compacts throughout the range of temperatures at the shor t  carbonisat ion time 
s tudied ,  the s h a t t e r  and abrasion s t rengths  f a l l i n g  s l i g h t l y  at the higher tempera- 
tures .  
the way i n  which the vitrinite gra ins  appear t o  jig-saw' i n t o  one another. The 
maceral analyses show a s e r i e s  of expansions and contract ions throughout the  range 
which a r e  only qua l i ta t ive ly  followed by the o t h e r  coals studied.  

A photomicrograph of a 97.C$1tpure"vitrinite br ique t te  (Photo. 11) i l l u s t r a t e s  

The e x i n i t e  r i c h  mixtures (up t o  51% volume) did not produce s t rong  br ique t tes  
before 410°C, but above this temperature the e x i n i t e  played an  important r o l e  i n  
br ique t t ing ,  e i t h e r  alone or i n  combination with v i t r i r d t e  o r  micr ini te  1. The 
q u z l i t y  of ex in i te  r i c b  compacts rose t o  a maximum at  about C and then f e l l  
grzdually. 
vitrinite 665. rnicrinite 1796, and micr ini te  2 p lus  f u s i n i t e  IC%) shows d e f i n i t e  
br idging of coed gra ins  by melted ex in i te .  
l o s t ,  both with respect  t o  increasing temperature and carbonisat ion time. 
zppearance ai? a recognisable rnaceral would not preclude i ts  impregnation i n t o  the 
microstructure of remaining coa l  substance. The changes i n  the macerdl s t ruc ture  
were coincident with porosi ty  changes. 
nitroger. and air f lu id isa t ion .  

A photomicrograph (Photo.12) of a 'whole' coa l  br ique t te  ( e f i n i t e  I%, 

As a maceral the e x i n i t e  appeared t o  be 
Its dis-  

There w a s  no s i g n i f i c a n t  d i f fe rence  for  

The poros i t ies  of the chars (Fig. 8) rose s teeply  with temperature and 
increased with period of carbonisation. 
three separate  types of pores were measured: 
na tura l  holes. 
r e s u l t i n g  from the decomposition of e x i n i t e  and v i t r i n i t e  attempted t o  e s c a p  
through the p l a s t i c  c r  semi-plastic v i t r i n i t e ,  and t h a t  the angular holes were 
cracks formed a f t e r  carbonisation when the mater ia l  contracted on cooling. 
t h i r d  c l a s s i f i c a t i o n  of ho les ,  na tura l  holes ,  occurred i n  f u s i n i t e  and semi-fusinite 
grains .  

In determining the p o r o s i t i e s  of chars ,  

It w a s  probable t h a t  the rounded holes  were formed as the gases 
rounded holes ,  angular holes and 

The 

The poros i t ies  shorn i n  Fig. 8 a r e  'rounded hole '  poros i t ies .  

Table 4 below i l l u s t r a t e s  the r e l a t i v e  importance of the rounded, angular and 
na tura l  holes i n  Calverton coKL0 

TABLE 4 
Porosi ty  Analyses of Calverton Chars 

Calverton Rounded 
B miri. N~ holes 

375OC 1.4 
350cC 0.1 

400cC 0.7 
425OC 21 -6 
450zC 43.4 
475 c 51 07 
500°C 60.5 

N2 30 nin. 

350°C 0.4 
375OC 0.4 
4000C 10.2 

Angular 
holes  

1,6 
1.6 
2.2 
3.9 
3.2 
3-5 
2.6 

425uC 32.3 ! 4.0 
450;C 47.3 ' 305 
475 c 52.8 ' 3.4 
500°C 59.4 2.6 

Natural  
holes  

2.4 
- 

1.8 
2 - 3  
3.0 
1 .I 
101 
1-0 

T o t a l  

4.1 
4.8 
5.2 

28.5 I 

47.7 
56.3 
64.1 

p z t g  ' 

~~ 

1.1 j 305 
1.3 I 3.6 j 
2.0 j 16.0 
1.9 ' 38.1 
1.2 52.0 
0.3 56.5 
1.2 63.2 



natura l ly  occurr ing i n e r t  material where over 1% is  present  i n  the 
original coal. Where this na tura l ly  i n e r t  material is not present ,  an 
a r t i f i c i a l  a d d i t i v e ,  e o g o  high temperature coke, may be used. 

On a commercial s c a l e ,  sudden or gradual changes of the  maceral composition 

I 

1 
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CAF'TIONS TO PHOTOMICROGRAPHS OF CHAR GRAINS 

Photomicrographs of 30 minute Calverton Chars C.P.S.1855/16 

(Magnification approximately X 120) 
Photo. 
NO. 

1- 

2. 

3.  

4. 

5. 

6 .  

7. 

35OoC N2 Fluid isa t ion  , .  

The exinite appears unal tered at  this temperature. 
around the imrt f u s i n i t e  mass, which ind ica tes  t h a t  there may be contract ion.  

a Fluid isa t ion  

The e x i n i t e  appears unal tered except where i t  l i e s  on t h e  m a r g i n s  of g ra ins  and 
has been oxidised. The v i t r i n i t e  is cracked, and has f a i r l y  wide oxidised 
m a r g i n s  extending up the open cracks. 

The vi t r ini te  shows cracking 

4W°C N2 

The e x i n i t e  is disappearing, leaving i r r e g u l a r  holes  i n  the micr in i te  and 
v i t r i n i t e .  The megaspore i n  the l a r g e r  durain gra in  has  become l i q u i d  and some 
of i t  has migrated t o  the edge of the gra in ,  cementing a t r i a n g u l a r  v i t r i n i t e  
g r a i n  t o  it. The micr in i te  and f u s i n i t e  a r e  unal tered,  and t h e  v i t r i n i t e  
remains angular, with f ine  cracks. 

4OO0C Air 

A la rge  megaspore has become oxidised and has cracked a w q  from the  dura in  g r a i n  
which contains it. Within this megaspore there is a mall a r e a  of  u n o e d i s e d  
v o l a t i l e  matter which i s  boi l ing off .  
in both durain grains. 
oxidised and the t r a n s i t i o n  between v o l a t i l e  and non-volatile e x i n i t e  is shown. 
The v i t r i n i t e  i s  j u s t  beginning t o  become p l a s t i c  enough f o r  rounded bubbles t o  
develop i n  some of the  grains .  

There is unolddised e x i n i t e  b o i l i n g  o f f  
I n  the t r iangular  gra in  the megaspores have been p a r t i a l l y  

425OC N, 

Most of the e x i n i t e  has disa-ppeared. The v i t r i n i t e  grains are becoming p l a s t i c ,  
and some grains  are f i l l e d  with gas  bubbles. The i n e r t i n i t e s  a r e  s t i l l  unaffec- 
t e d ,  except by escaping from enclosed vitr inite and e x i n i t e .  

425OC A i r  

The vitrinite appears to  be considerably more p l a s t i c  than i n  N2 at this tempera- 
ture .  The gra ins  are  considerably swollen and t h e i r  margins an? rounded. There 
i s  st i l l  some e x i n i t e  present i n  the durain grain.  The i n e r t i n i t e s  remain as i n  
the 400°C sample. 
still sealed,  s ince t h e  bubbles have no oxidation r i m s ,  i n d i c a t i n g  t h a t  the 
m a r g i n s  must still  be qui te  p l a s t i c .  

It can be seen t h a t  the margins of the  vitrinite gra ins  are 

The large durain g r a i n  has remained i n e r t ,  except for  a vi t r ini te  band which i s  
boi l ing  out. 
micr in i te ,  which has not even collapsed i n t o  the  space l e f t  by a megaspore. 
pure vitrinite g r a i n s  are  swollen, but the ones shown in t h i s  micrograph st i l l  
have f a i r l y  t h i c k  walls. 

The microspores and megaspores have gone, leaving a ske le ton  of 
The 
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Again the decomposition of v i t r i n i t e  appears t o  be i n  a l a t e r  s tage than in the  1 
45OoC N2 chars. 
unoxidised, being s t i l l  enclosed. 

Some of  t h e  bubbles contain oxidised margins, and some are 
I 

500OC. N -2 
The vitrinite gra ins  have become quite rounded, cons is t ing  of a network o f  thin-  
walled bubbles. Bands of micr in i te  2 have remained with t h e i r  o r i g i n a l  
s t ruc ture .  

~ O O O C  Air 

The s tage reached i s  very similar t o  t h a t  of the N2 char  a t  this  temperature, 
except for the  oxidat ion of the g r a i n  and pore margins. 
and fus in i te  appear t o  have i ts  o r i g i n a l  s t ruc ture .  Most of the  bubbles have 
been oxidised, showing t h a t  the  surface of the g r a i n s  h a s  been broken, and 
t h a t  the oxidised v i t r i n i t e  has become b r i t t l e  at t h i s  temperatui-e. 1 

Again, the micr ini te  2 
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